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444 G.W. HUNT

The paper presents a procedure for the localized analysis of compound bifurcations.
A full range of phenomena are embraced, including loci of equilibria, secondary
bifurcation, and imperfection sensitivity, the scheme showing how to generate the
appropriate lowest-order non-trivial equations of interest. A number of aids to
solution are presented, including the concepts of generalized imperfection and
generalized loading parameter.

The scheme is developed by using a general non-diagonalized format suitable for
numerical analysis, but the special diagonalized form can also be used to good effect.
This is illustrated in the application to the interactive buckling of stiffened plates
and shells, when local and overall buckling occur simultaneously or nearly so. The
modelling relies heavily on the elimination-of-passive-coordinates routine of the
general scheme. The study shows that the parabolic umbilic catastrophe is the key
phenomenon for most such problems.

Finally, the branching analysis is fully illustrated for semi-symmetric branching,
where one of the contributing bifurcations is symmetric and the other is asymmetric.
In all, ten different loci are treated, including the full imperfection sensitivity at
complete and near coincidence plotted in three-dimensional form; these relate to an
earlier stiffened-plate formulation. The general scheme is thus made directly accessible
for any problem that exhibits a bifurcational manifestation of either the elliptic or
hyperbolic umbilic catastrophe.

INTRODUCTION

As mathematical modelling gains in sophistication, bifurcation theories are playing an increas-
ingly important role in a growing number of scientific disciplines. However the number of
different approaches to the study of bifurcation, and the class of phenomena to which the word
is applied, are also growing. For an indication of the breadth of interest we refer to the pro-
ceedings of the 1977 New York Academy of Sciences Conference on Bifurcation Theory and
Applications in Scientific Disciplines (Gurel & Réssler (ed.) 1979). Here we find studies in
pure mathematics, hard sciences such as physics, chemistry and engineering, biology, and social
sciences such as ecology and economics, and a wide range of phenomena are discussed, from
the now well known elementary catastrophes of Thom (1975) to the so-called ‘strange attrac-
tors’ (Rossler 1979); the latter exhibit seemingly chaotic behaviour while being governed by
relatively simple differential equations, and have a possible application in the modelling of
turbulence (Ruelle 1979).

A bifurcation theory is usually developed under the umbrella of a specific discipline, and
there is thus a wide variation in overall emphasis, depending on specialist needs and conven-
tions; as a result some confusion has arisen over terminology, even over the meaning of ‘bifur-
cation’ itself. This is unfortunate, especially in the light of recent attempts to cross disciplinary
boundaries (see, for example, Zeeman 1977, or Poston & Stewart 1978), but must be regarded
as inevitable, at least for the foreseeable future. It calls for careful definitions, wherever ambi-
guities can arise.

Historically, structural mechanics has proved a rich source of bifurcation phenomena,
largely because of inherent optimization procedures which form an integral part of any design
process (Thompson & Hunt 19774). Frequently these have led to ‘perfect’ structural designs
with load-carrying properties which are unobtainable in practice, and the phenomenon of
imperfection sensitivity results (Koiter 1945, Thompson & Hunt 1973); sometimes they call for
coincidence of critical loads, leading to compound bifurcations (with co-rank greater than one).
In this paper a comprehensive algorithm is presented for the localized analysis of these phe-
nomena, as they arise in structural systems. The scheme is of course available for application
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ALGORITHM FOR COMPOUND BIFURCATION 445

in other disciplines, but it is developed particularly with the problems of compound bifurcation
in mind, and other fields have yet to develop a comparable interest in their analysis.

More specifically, we suppose in the first instance that, at any stage in its evolution, our
system can be described by a potential function V(Q,) where @, represents a set of n internal
variables or generalized coordinates. This exhibits a minimum-seeking gradient dynamic, which
limits the phenomena to the elementary catastrophes (Thom 1975), and the mechanics appli-
cations to predominately conservative systems; by this we mean that a little positive-definite viscous
damping is necessary during fast dynamic response of the system, to allow it to settle down to
a stable equilibrium state in a potential well. It is important to point out that most elastic
buckling failures fall into this category, and there are also indications that cases of plastic
buckling with no elastic unloading can be treated from a similar quasi-elastic standpoint
(Hutchinson 1974).

The state space @Q; is chosen as finite dimensional, and the analysis thus relates to a discrete
rather than a continuous view of reality. We are not to concern ourselves with the considerable
difficulties associated with reducing, in a mathematically rigorous way, the latter to the former;
we merely note that it can often be achieved by embedding the problem in Banach or Hilbert
space, and refer to Poston & Stewart (1978) for a readable modern synopsis of the situation.
Nevertheless it must be stressed that both are essentially models, and it is not immediately
clear whether genuinely infinite-dimensional pecularities, exclusive to a continuum, can be
actually realized; a physical system, after all, comprises a large but finite number of atoms.
We can say, however, that the discrete approach is the simpler, and the scheme presented here,
making no appeal to any inherent diagonalization, has a clear and immediate application in
finite-element modelling.

Next we allow controlled parametric changes, writing the potential function as

V= V(Qu Ai)’ (1)

where A7 represents a set of 4 external control parameters; they may be genuine controls, the
load on a structure for instance, or imperfections (perturbations) in the system. Interest often
centres on the number of these required for structural stability, such that the underlying topology
suffers no change of form with further perturbation. This concept was introduced by the
Russians Andronov and Pontriagin in the 1930s, and is the basis of Thom’s catastrophe theory,
as well as a more refined classification due to Golubitsky & Schaeffer (1979a—¢), in which the
two types of control parameter are taken as unmixable; this is clearly the appropriate setting
for structural mechanics (Thompson & Hunt 19774).

The segregation of the controls generates fundamental differences in outlook. Separating a
single special bifurcational parameter A from the rest, we find that interest naturally focuses on
equilibrium paths, traced by varying A with the other A7 held constant (Thompson & Hunt
19770), rather than the more general equilibrium surface or manifold (Thom 1975, Zeeman
1977); this evolution with A can be seen as taking place in a completely different time scale
from that of the remainder of the 4. It is the topology of the paths that Golubitsky and Schaeffer
investigate for structural stability, rather than that of the V-surface itself; this often demands
more control parameters than the catastrophe theory classification.

This shift of emphasis shows why confusion has arisen over the meaning of bifurcation. We
take it here in the sense of Poincaré (1885), as the crossing of two or more separate equilibrium
paths (of some perfect system) giving divergent responses in imperfect systems (Thompson &

28-2
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446 G.W. HUNT

Hunt 1973); some more mathematical treatments (see, for example, Rabinowitz 1977) have
bifurcations in the form of the V-surface in mind. The two views do overlap, but the former
specifically excludes limit points, where a single equilibrium path reaches a locally extreme
value of A in Q,~A-space, while the mathematical definition does not. There are clear com-
putational reasons behind excluding limit points from our analytical development, and they
are dealt with fully and usefully elsewhere (Thompson 1979).

The archetypal bifurcation problem of structural mechanics has one equilibrium path,
single-valued with respect to A, with a relatively simple perhaps trivial solution, often a result
of some in-built symmetry in the system. We assume that this fundamental path is known, and
that with increasing A it loses its stability at an m-fold compound critical point (co-rank m).
The scheme presented here sets up locally valid (asymptotically exact) equations of low order
for a complete range of phenomena associated with this point of bifurcation. Ease of solution
depends on the problem in hand, and we find, for the full analysis of compound branching,
that numerical techniques are essential. The analytical tool is the perturbation method, relying
on the implicit function theorem for rigour, and we start with the elimination of n —m passive
coordinates to reduce the essential degrees of freedom to m; this corresponds to the splitting
lemma of mathematical texts, which we note also appears in an infinite-dimensional version.
Further details can be found in Poston & Stewart (1978).

The scheme embraces all our earlier perturbation studies of bifurcation (Thompson & Hunt
1973, Hunt 1977, 1979), as well as others (Sewell 1965, Huseyin & Mandadi 1977, for example),
via two conceptual generalities. First we can choose between a number of different sets of
governing equations, depending on the problem in hand. Secondly and more importantly,
the number, %, of A7 is left unspecified throughout the general development, and particular
types of A7 are only specified as they emerge naturally from the flow of analysis. Thus the
bifurcational parameter 4, the imperfection parameters €?, the generalized imperfection ¢, and
others are defined according to the needs of the general theory. The analyst has only to adjust
the governing equations and control parameters to suit his problem, and he can immediately
write down the appropriate low-order localized equations. A number of aids to solution are
also described.

The rationalization of our earlier work also includes a new simplified notation, a direct
legacy of the general representation of the controls. We note that coefficients of Taylor expan-
sions are left in general form, rather than being replaced by unity or some other convenient
number as is common in more theoretical studies; the analysis can thus be directly and quan-
titatively applied to an appropriate potential function without preliminary manipulation.

The generalized approach is fully illustrated in an application to interactive buckling in
stiffened structures, a difficult problem of considerable importance in both box-girder and off-
shore structural design. Here the elimination of passive coordinates routine, in a diagonalized
form, is the principal tool, and with symmetry considerations allows a full description of the
phenomenon. Quantitative cvaluation_of key energy-coefficients is:demonstrated for a simple
stiffened plate problem. '

Finally, the bifurcation analysis is specifically illustrated for semi-symmetric points of bifur-
cation, which correspond to the elliptic and hyperbolic umbili¢ catastrophes, with a maximum
number of four specified controls. In all, low-order equations-are set up for ten different loci —
including equilibrium paths of the perfect system, full imperfection-sensitivity, and secondary
bifurcations — both for complete coincidence of two contributing bifurcations on the funda-
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mental path and with them separated by variation of one of the controls. These are presented
in tabular fashion, and methods of solution are indicated in all cases. Computer-drawn, three-
dimensional imperfection-sensitivity plots are included for one typical case, a homoeoclinal
point of bifurcation corresponding to the stiffened plate of Tvergaard (1973); entirely similar
plots for the other semi-symmetric points, monoclinal and anticlinal, can be found in Hunt

et al. (1979).

1. BIFURCATIONAL FORMALISM

Consider a system governed by a gradient potential function V(Q,, A7). We take it as axio-
matic first that a stationary value of 7 with respect to the generalized coordinates @, is necessary
and sufficient for equilibrium of the system, and secondly that a complete relative minimum
of V with respect to the @, is necessary and sufficient for the stability of an equilibrium state
(Thompson & Hunt 1973). Clearly these concepts imply some measure of time, but we assume
that the associated response of the system is instantaneous, in the (evolution) time scale of the
control parameters. We have the n equilibrium equations V; = 0, and critical equilibrium is further
defined by the second variation V;; becoming singular. Here a subscript denotes partial differen-
tiation with respect to the corresponding generalized coordinate (Thompson & Hunt 1973).

Next we assume that one of the controls is special, in the sense that its associated evolution
takes place instantaneously in the time scale of the rest (Thompson & Hunt 19774, Golubitsky
& Schaeffer 1979a). This model has its origins in the general theory of elastic structures, where
loads and imperfections are traditionally separated both theoretically and experimentally, but
clearly has a wider scope for application, particularly in other branches of the physical sciences.
We distinguish the special control by the lack of a superscript and designate it 51mply A, when
the occasion demands that it be separately identified.

(a) The fundamental path

We ensure that the system experiences a bifurcation, as defined in the Introduction, in the
following way. We identify a single equilibrium path, traced By varying /A with the remainder
of the A7 constant, which always, in the region of interest, has a component in the A-direction
in Q,—A-space. This specifically excludes limit points (Thompson 1979), along with some higher-
order phenomena, and the path is thus single valued with respect to 4. Most importantly from
the analytical point of view, it allows a simplifying transformation to a new potential function,
involving a localized set of incremental generalized coordinates. We shall refer to this path as
the primary or fundamental path.

In structural mechanics formulations a fundamental path of this type is often exhibited by
the perfect system, or that envisaged by the designer. It frequently represents some simple
perhaps trivial solution, a result of underlying symmetries. Imperfect systems are generated at
different but constant values of others of the A7, the imperfection parameters. Limit points are
not excluded from the paths of imperfect systems.

It is well known that, on varying a single control, there is a unique equilibrium path through
a non-critical equilibrium state (Thompson & Hunt 1973). Interest naturally focuses on initially
stable paths, and a basic theorem for gradient systems (Thompson 1970, Thompson & Hunt
1973), since proved by Kuiper as reported by Chillingworth (1976), shows that stability can
now only be lost at an intersection with a second path, a point of bifurcation. We see later that,
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448 G. W. HUNT

under such circumstances, the potential function carries special properties with respect to the
single control A, which we henceforth refer to as the bifurcational parameter.

(8) Incremental coordinates and associated transformation

Formally, the single-valued fundamental equilibrium solution is written

Qi = Qi(4), (2)

and we assume it to be known. It gives a path F in @,—A-space, which varies monotonically with
A in the region of interest, and which intersects other as yet unknown secondary or post-buckling
paths at points of bifurcation.

We introduce a localized set of n incremental coordinates ¢; defined by

Q; = QF(4) +¢,, (3)

which implies a one-to-one correspondence between the Q; and the g;; this is clearly only true
in the absence of limit points on F. With varying A the origin of the new coordinate frame
slides along the fundamental path, spanning the full range of interest of Q,~A-space; again it
is only by denying limiting behaviour that this can be ensured.

We write a new potential function, in terms of the ¢;:

W(gi, A7) = V[QF(A) +4g;, AT]. (4)

This merely amounts to substituting equations (3) into V; any constants generated can be
ignored, since we are only interested in variations of ¥ or W, never absolute values. The
manoeuvre may, however, destroy certain linearities (Thompson & Hunt 1973).

The equilibrium and stability conditions, expressed axiomatically above, pass over unchanged
to the new W-function, which has the properties,

W¥ = WF = WF = WIF = ... =0, (5)

where subscripts denote partial differentiation with respect to the ¢;, and a prime denotes
partial differentiation with respect to A. These arise because, in mapping from @,-A-space to
g;—A-space, F is moved onto the A-axis, and a Taylor expansion of W} in terms of A must thus
result in W, = 0 everywhere.

The derivative W is of most interest here. Its vanishing at a point of bifurcation is intimately
connected with the fact that here, as opposed to a limit point, a generalized load does no first-
order work as an elastic structure moves through its buckling displacement (Thompson & Hunt
1973). A must then act initially on a quadratic form of the generalized coordinates in a Taylor
expansion of the potential function about the critical point, instead of a linear form as is the
case with the limit point (Thompson & Hunt 1973).

(¢) Active and passive coordinates

Stability of equilibrium states on the fundamental path is governed, in the first instance, by
the quadratic form }Wfg,q,, and we assume that the path is initially stable, so that for low 4
WE is positive definite. With increasing 4 we shall suppose that we encounter an m-fold compound
point of bifurcation C, where A = AC and W is singular and of rank n—m (co-rank m). We
assume that no other bifurcations arise on F in the region of interest, so problems of near
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coincidence are to be treated with the introduction of specific A7 to draw the bifurcations
together.

We next split the zn generalized coordinates into two distinct subsets, the active and passive
coardinates. Thus n —m are selected as the passive coordinates and we adopt Greek suffices for
their use, writing them as g,, while the remaining m become the active coordinates and we
henceforth reserve Latin subscripts for their use. The only restricting condition on this segre-
gation is that the submatrix related to just the passive coordinates must be non-singular, and so

Wl = 0. (6)

We know from the definition of the rank of a matrix that a valid segregation can always be
found, but we note that it is not necessarily unique; a different choice of passive coordinates
could lead to a different but equally valid analysis. However the situation is completely clear-
cut if the quadratic form is diagonalized, for then the active coordinates must be the amplitudes
of the critical modes.

(d) Elimination of passive coordinates

We now demonstrate how the n —m passive coordinates can be eliminated from the analysis
by the systematic use of an intrinsic perturbation scheme. This general method has proved most
useful and versatile in elastic stability studies (Sewell 1965; Thompson & Hunt 1973; Hunt
1977, 1979), and is the major analytical tool of this paper. The scheme for eliminating the
passive coordinates serves as an introduction to the underlying philosophy.

The procedure can be described as follows. We start by assuming, in implicit parametric
form, a result that we are trying to obtain. This is then substituted into the appropriate non-
linear equations — those which if they could be solved would give the required result. The
equations become identities — we effectively constrain the system to states which satisfy them —
and can be repeatedly differentiated term by term to generate an ordered series of equations,
often sequentially linear. Particular solutions to these perturbation equations can then be used
to construct the assumed form as a power series.

The implicit assumption that nonlinear relations can be expressed as Taylor series raises
certain mathematical questions which we shall not attempt to answer here; we merely refer
to the excellent account of Poston (Poston & Stewart 1976), who discusses the point in the light
of alternative underlying assumptions of analyticity and determinacy. For the localized analysis
of stability phenomena in conservative structural systems, such considerations are rarely
necessary.

Here, we begin by assuming that the passive coordinates can be written as a function of the
active coordinates and the control parameters:

a = 4a(gs> A7) (7
These are then substituted into the passive equilibrium equations ¥, = 0 to give the identities
W;[q,;, qﬂ(qi’ Ai)s A’] = Oa (8)

which define an activity surface in the full ¢,~g,—A’-space, containing in essence a complete de-
scription of the system response (Thompson & Hunt 1973).

The left-hand side is now just a function of ¢; and A7, and can be repeatedly differentiated
with respect to these to give the ordered series of perturbation equations. Differentiating once

we have Mi"'m,ﬂpi — O,}

9
W,pah+ Wi = o, ®)
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450 G. W. HUNT

and a second time,
Weii v Wopi9p; +Wopipi + Wapy Qi 0yi + Weopdpii = 0,

Mﬁiﬁ?‘f Wa]zi + %quﬂiqi +.Wa{ﬂq€i +_Wé,eq%_z: =0, (10)

Wopy 050y + Wag@h+Wopqf + Wipgh+ Wi

I
o

etc. Here subscripts on W denote partial differentiation (of the original unconstrained form,
before the substitution of equations (7)) with respect to the corresponding coordinate, as do
further subscripts on ¢,; similarly superscripts denote partial differentiation with respect to
the corresponding A7. We thus have

P 9g, B g,
Ui = 3. 7 = o 1 = ag, 00 (11)

etc. The tensor summation convention is employed over Greek subscripts, with summation
ranging over the n—m passive values.

We now assume that W is written as a Taylor series, known to as high an order as necessary,
and expanded about any point F on the fundamental path. Evaluating the perturbation equa-
tions at F then gives the required g,-derivatives. We have the two sets of first-order equations,

Wopqpl® = —Wais }

12
W;zﬂq/j?lF _ WZ;F; ( )

which are linear, and non-singular by equation (6), and can be readily inverted to give ¢§;
and ¢4*. The equations are in standard form, so each of these derivatives can be written directly
as the ratio of two determinants, the denominator being the complete determinant of W,
and the numerator being the determinant of this same matrix with the particular Wfi-elements
replaced by —WJ (or — WIF). We see that this process comprises a total of (m+ %) (n—m)
such calculations and may thus require the aid of a digital computer, to which it would be .
well suited.

We remember that the bifurcational parameter A is among the A7, and has the properties
of equation (5), so we have the particular results from the second set of equations (12):

8" = 0. (13)
We note that the prime is again used, replacing one of the superscripts, when differentiation is

specifically with respect to A.
The second-order equations can now be written in the form

Wopsi|" = — Wois + Wopipi +Wapi s+ Wapy 95:y5) ¥,

Wopghil® = — (Whi+Wops b+ Whsgpi+ Wep, a5 65) 15 (14)

Wepaf|* = — (Wi + Wisgh+ Wisgh+Wep, aha3)|".
We see that the right-hand side of each of these is known once the first-order derivatives are
obtained, and the equations can thus be readily solved by the same method as above for the
derivatives ¢§;;, ¢%, and ¢//*. The scheme can then be continued to the next-order equations
if necessary, and continued in sequentially linear fashion. One general result, which can be
readily proved by induction, is that

W= =g = =0 (15)

which arises from the special properties of the bifurcational parameter 4.
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We can now write Taylor expansions of ¢,(¢;, A7) to as high an order as we please, and this
leads to a new potential function with only m degrees of freedom, defined by the identity

W (9 A7) = Wgss 4a(90 A7), A7]. (16)
We obtain derivatives of the new function by direct differentiation,

,W;: = M/;'qum*,
Wii = Wi+ WeaiQai ¥ WoiQai + Wap9ai 95 + Welaiss (17)
Wi = Wi+ W, ¢+ Waquai+m,aqaiq,%‘+mqii

etc. and evaluation on the fundamental path now gives, after a little algebra, the results of

interest:
WF = 0, )

Wi = W+ Weiqusl"s
WIT = Wi+ W, qhl",
Wit = Wi+ Wik ui + Wair 9as + Wi Qo + Wapi9as Opx
+W,pi90i 9+ Wopn9ai 95+ Wapy 92i 955 Oyil >
WET = WE+ Wi o+ WG +Waij 06+ Wapiai 05+ Wapi 90195 (18)
+ Wisq,ids5+ W,y 9ai 985 a|%,
Wia = Wejia +Wosaai + Waia9ai + Wait9are + Waiin 9a
+Wopra90i 985 + Wapit9ai i + Wapit Qe 9+ Wapun9ui 9
+Wopin9ai 9+ Wopii Qa9+ Wepyi 9ai 99y + Wapys 9ai 9s 90
+Wopyi90i 985 9t + Wapyi 92955 Oyie + Wapys 901955 9yi 9ot
- m;ﬂ’ 9aii9pr — WapQai9pit — Wap qailqﬂjle J

etc., which can be used to construct a Taylor expansion of #”. The equilibrium and stability
conditions (expressed by the earlier axioms) pass over unchanged to the new function (Thomp-
son & Hunt 1973), so from now on we can operate exclusively and with confidence in terms
of #°. We have in particular the special results

WE =W/ =WF =...=0, (19)

1
Wi = Wi+ Wi+ Weaidei + Wapdaidsil 5
from the properties of the bifurcational parameter A, and at the m-fold critical point C itself]

W;;‘} =0, (20)
so that #§ is null.

This completes the general perturbation method for the elimination of n —m passive coordi-
nates at an m-fold point of bifurcation, which as we discussed earlier, corresponds to the splitting
lemma of mathematical texts; rigorous justification of the process lies in the implicit function
theorem (Poston & Stewart 1978). The scheme makes no resort to diagonalization of potential
function, and thus is particularly suited to numerical computer analysis, arising perhaps from
a finite-element formulation. We note that, although we are now able to cast a problem in an
m-dimensional form, the passive coordinates are not simply neglected, and any contaminating

effect that they may have on the buckling modes is automatically taken into account.

29 Vol. goo. A
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2. BIFURCATION ANALYSIS

We present in this section a comprehensive perturbation approach to the analysis of m-fold
bifurcation. The general treatment allows us to set up the appropriate first-order equations
over a very broad spectrum of problems, including post-buckling, imperfection sensitivity, loci
of secondary bifurcations, and even the locus of an m-fold point itself when necessary. Complete
solution to the equations, to give asymptotically exact results for the problem in hand, is often
difficult, and we demonstrate two particular aids to solution in the twin concepts of generalized
imperfection and generalized load.

Having successfully eliminated the passive coordinates we shall operate exclusively with the
m-degrees-of-freedom potential function,

v = W(qi’ Aj): (21)

with the properties described at the end of the previous section. The set of control parameters
A7 of course includes the bifurcational parameter 4, but the composition of the remainder
depends crucially on the problem in hand; thus, for example, m imperfection parameters can
be identified among the A7, but these are set to zero to investigate the equilibrium behaviour
of a perfect system.

The governing equations to be used depend precisely on the information required. The full
set of equilibrium equations #; = 0 will always appear. A general point of critical equilibrium
is further defined by the local eigenvalue equation #7;x; = 0, where x; denotes a local eigen-
vector (Hunt 1977); this takes the specific form #7; = 0 if the locus of an m-fold critical point
is sought (Hunt 1979). Secondary bifurcations are pin-pointed from among all critical states
by the additional equation #7'x; = 0 (Hunt 1977). A perturbation approach with a single
independent variable is to be used, so all variables, including the local eigenvector x,, are
written in the parametric form

9 = qi(s)’ Al = Aj(s)’ X = xk(5)9 (22)

where s is the single perturbation parameter, as yet undefined; it may be left in this general form
or specified further, according to the demands of the analysis. Perturbation equations are to be
derived initially in the most general context, but in any specific instance certain terms may not
be present, as we shall see later in the analysis of semi-symmetric branching.

(a) Equilibrium equations
Substituting the above parametric forms into the equilibrium equations #; = 0 we obtain

the equilibrium identity,
Wilq;(s), 4%(s)] = 0, (23)

which is differentiated once with respect to s to give,
Wisgi + 7 A1 = 0. (24)

Here a superscript in parentheses denotes the number of full differentiations with respect to
the perturbation parameter s, and the tensor summation convention is used, repeated sub-
scripts denoting summation from 1 to m, and repeated superscripts denoting summation from
ttoh
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On evaluation at the m-fold bifurcation point C the first term vanishes by the criticality
condition (20) and we have Wi AIO|C = o, (25)

which at first glance seems a set of m equations in the £ unknowns A7MC, But some of this set
of derivatives make no appearance in the equations, since they are multiplied by zero coeffi-
cients; the bifurcational parameter derivatives A®¢ would be absent, from condition (19), as
would the corresponding derivative of the splitting parameter o, of the later semi-symmetric
analysis.

The control parameters that are represented are those which act on a linear form of the
active coordinates, in the Taylor expansion of #~ about C. These are referred to as the imperfec-
tion parameters, henceforth denoted ¢/, and we shall suppose them to be m in number; if this is
too many for a specific problem we can later set some to zero, while a formulation with more
than m can always be reduced to this number by lumping similar contributions together. This
reduces equations (25) to m equations in m unknowns,

Wiiel|C = 0, (26)

and assuming that the imperfections arise in the system in some typical fashion so as to render
these equations non-singular and |#7C| # 0, we have the important result

€0 = 0, (27)

The m imperfection parameters will be assumed, for the sake of simplicity, to be the first
of the A7, with j ranging from 1 to m. The remaining 4 —m control parameters, which must
comprise a non-empty set since it includes the bifurcational parameter A, are formally repre-
sented by the condition wie - o, (28)
for all ¢ and j ranging from m +1 to .

The segregation of the controls into two groups is of deeper significance than at first might
be supposed. We shall find in every perturbation equation that we derive, that the two remain
completely separate. They thus clearly have quite different roles to play. The point is well
illustrated in the next equilibrium perturbation equation.

Differentiating the equilibrium identity a second time and evaluating at the point C we
obtain .
Wi i 4 + 295 0 AR + W eld|C = o, (29)

the first non-trivial equation of interest. We see that the summation implied by the repeated
superscript of the second term ranges just over £ = m+1 to A, by virtue of result (27), while
the third term contains merely e/-derivatives from conditions (28). We have here m nonlinear
equations in 7 + A unknowns, and general solution is clearly out of the question; however, they
are tractable in certain instances, as we shall see later. The process can be continued to higher
order by further differentiation and evaluation, but this is not done explicitly here.

(b) Critical state equations

In imperfection-sensitivity studies it is necessary to pin-point states of critical equilibrium
and this can be done via a local linear eigenvalue equation #7;x; = 0, x; representing the

local eigenvector (Hunt 1977). Substituting the parametric forms (22) we thus obtain the

critical-state identity : Wi [q1(5) A1 ()] %;(5) = o. (30)
29-2
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Differentiation with respect to s and evaluation at C then gives the equations of interest,
k
Wik g + Wi x; 40| = 0, (31)

in general a set of m equations in m + 4 unknowns. We see that ¢/-derivatives make no appear-
ance here, and the superscript summation of the second term is again over the range £ = m+1
to 4. The process can be continued by further differentiation and evaluation, but this is not
given explicitly.

In some studies it may be desirable to trace the locus of an m-fold critical point (Hunt 1979),
and we can do this by replacing the above equation with its special form for m-fold criticality,
#;; = 0. Substituting the parametric forms gives the m-fold critical state identity

Wiilaw(s), 4(s)] = 0, (32)
differentiation and evaluation giving m? equations in £ unknowns,

We note that duplicates will arise among this set of equations, from the symmetry properties
of the ¥ -derivatives. Again the e/-derivatives make no appearance, superscript summation is
over £ = m+1 to %, and the scheme could be continued if necessary.

(¢) Secondary bifurcation equations

Finally, we may wish specifically to pin-point secondary bifurcations, from among all the
critical states that can arise. We do this with the introduction, along with equilibrium and
critical state equations, of the additional equation #;'x; = 0, x, denoting the critical local
eigenvector as before. This states algebraically that a generalized load does no first-order work,
as a system moves through its buckling displacement, and can be rigorously justified with the
introduction of a set of incremental coordinates that remain fixed at the critical point of
interest (Thompson & Hunt 1973). We note that the bifurcational parameter 4 must now
play a key role, and the prime appears in the above equation, since the difference between a
bifurcation and a limit point depends on the orientation of the A-direction in control space
(Thompson & Hunt 19774).

Substituting the parametric forms (22) into this equation we obtain the secondary bifurcation
identity

Wi'l4(s5), A¥(s)] %:(s) = 0, (34)
differentiation with respect to s and evaluation at C now giving the single equation in m+A—1
unknowns:

Wiix, g0+ W F 2, A1O)C = 0. (35)
The second term must be included in this general formulation. However ef-derivatives will be
absent as before, derivatives of A likewise by condition (19), and similar conditions for the
remaining A’-derivatives may be such that the complete term vanishes; this is certainly the
case for the illustrated semi-symmetric branching analysis. As before we note that the scheme
can be continued as necessary.

(d) The generalized imperfection
Having set up the appropriate perturbation equations we now turn our attention to their
solution. For a distinct critical point with m = 1 this can usually be simply done, but with
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m # 1 the situation becomes much more complicated. However, the analysis frequently can
be simplified by systematically taking sections through the control space, thereby reducing the
number of unknowns in a typical set of equations but solving them repeatedly. We now intro-
duce one way in which this can be done, with the concept of a generalized imperfection (Hunt
1977). Here it is assumed that the full imperfection space €? is most conveniently scanned with
a sweep of an imperfection ray R through the full space, use being made of a polar rather than
a cartesian representation of the imperfections.

Let us therefore consider in isolation this m-dimensional imperfection space €*. We introduce
a polar coordinate transformation on the imperfection parameters thus;

¢ = ei(0,,¢) = Gi(0,)e, (36)

where « ranges from 1 to m — 1. Here the G%(6,) are trigonometric functions only; for m = 2 °
they are G! =sinf, G2 = cos 6, while for m = 3, G! = sin 0,, G2 = sin 6, cos 6,, and
G® = cos 0, cos 0,, suffice. The parameter ¢, which clearly represents progress along a ray
emerging from the origin € = 0, is termed the generalized imperfection.

Writing now the potential function as #(g;, A7, €¥), so that the set A7 is from now on understood
specifically to exclude the m imperfection parameters, we can determine the energy level just on the
ray R, where 6, = 6%, by the transformation

W (g AV €) = Wlgy, A9, G*(6F) €] (37)

The derived perturbation equations still hold good for the new potential function of the left-
hand side, which we continue to call #°, but the number of unknowns is reduced by m—1.
Required derivatives can be found by successive differentiation and evaluation at C; those
with respect to just ¢; and A’ remain unchanged, while a dot will be used to denote partial
differentiation with respect to the generalized imperfection €. Thus,

W,C = WHCGI(HR) (38)
etc., the repeated superscript implying summation over the range j = 1 to m. We see that the
use of the same symbol, #”, on both sides of the transformation identity need create no con-
fusion, since the syntax will always make it perfectly clear which representation applies. We
note finally that the sweep of the ray through the full imperfection space implies considerable
repetition, so the use of a computer becomes almost essential in problems of compound
bifurcation.

(¢) The generalized loading parameter

The generalized imperfection construction is only appropriate when the m imperfection
parameters all enter the potential function in the same way, acting on a linear form of the ¢;.
We now concentrate on the set of A7 that act on quadratic terms, which we can suppose
includes the bifurcational parameter /4. When more than one such parameter is to be con-
sidered, it is sometimes useful to adopt a similar construction, thereby reducing the number to
one but generating a full series of like problems as before.

In a bifurcational problem of structural mechanics, this subset of A7 can comprise just
structural loading parameters, and so the analysis embraces the multiple loading situation.
The single key parameter of the construction is thus referred to as the generalized loading para-
meter, although it need not have any such physical significance in a specific problem. The set
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may include controlled geometric changes which act as splitting parameters to separate contri-
buting bifurcations on the fundamental path (Hunt ez al. 1979), or possibly other perturbations
which might enter the potential function in this special way. The formulation thus corresponds
closely to that of Huseyin (1975).

Let us suppose that we have r such parameters A, where 7 < & —m, defined by

XN = Al - AiC, (39)

J scanning over the values m+1 to m+r. The A7 are thus defined as incremental measures of
the controls away from the critical point C. We see that no attempt has been made to relate
the number 7 to m, unlike the generalized imperfection analysis.

We introduce the polar transformation

At = Xy, A*) = Hi(g,) A%, (40)

where « ranges from 1 to r—1. As with the imperfections, the H*(¢,) are trigonometric func-
tions only, so for r = 2 they are simply Hm+! = sin ¢, H™+2 = cos ¢ etc. The new parameter
A* represents progress along a ray R emerging from the origin in ‘load’ space A? and is termed
the generalized loading parameter.

Writing now the potential function as #7(g;, 4%, e, A¥), so that A’ is here understood to
exclude both the m imperfections and the r parameters A*¥ and may well be an empty set, we
can determine the energy level along the ‘load’ ray R, where ¢, = ¢Z, by the transformation

W(%, Aj; €, A*) = W[qi’ Ai, € Hk(¢§) /\*] (41)

Again the perturbation equations can be directly written down for the new potential function,
which we still call #7, but the number of unknowns is reduced by 7 — 1. The required deriva-
tives can be found by successive differentiation and evaluation at C, derivatives with respect
to just ¢;, 47 or € remaining unchanged. An asterisk will be used to denote differentiation
with respect to A*, so we have

WO = WiICHI($F) = 0, (42)
from conditions (28), and WFC = WHECH (R), (43)

the repeated superscript here of course implying summation merely over the range £ = m+1
to m +r. Again the use of the same symbol, #”, on both sides of the transformation identity need
create no confusion, since the syntax makes it clear which representation applies.

Care must be taken with application of the generalized loading parameter construction,
however, since in some instances it could lead to solutions being missed. The parabolic umbilic
catastrophe, for example, requires » = 2 for structural stability (Thom 1975). The imperfection-
sensitivity analysis of its bifurcational manifestation, the paraclinal point of bifurcation,
generates two quite different solution sets, one with A*IC 5 0 for both ¢, but the other with
AXDC £ 0, AMWC = (; a polar representation of the A? would give no quantitative information
on this second set of solutions, although a more subtle parabolic transformation could possibly
be substituted. It is in such complex situations that a knowledge of the unique topology of
individual catastrophes becomes invaluable.

We also note that when one of the A? is a splitting parameter, as in the following analysis of
semi-symmetric branching, the imperfection sensitivity is most usefully shown with this para-
meter held constant. To draw such plots a numerical search procedure can be used. This is
described during the analysis.
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(f) Further aids to solution

The unknowns of a specific problem can be further reduced, both by specifying the pertur-
bation parameter s, and by normalizing the critical local eigenfunction x; (when appropriate).
However, both manoeuvres can lead to solutions being missed, unless they are sought as
special cases. We elaborate on these points in the analysis of semi-symmetric branching.

FiGure 1. A typical stiffened plate, showing overall and local buckling modes.

3. STIFFENED STRUCTURES

Discretely stiffened components, notably plates and cylinders, are increasingly used in modern
structural design for their excellent load-carrying properties. Clearly one important aspect of
their behaviour must be the response under axial load. Here an optimum design will frequently
call for coincidence of two critical loads, one for an overall and the other for a local mode of
buckling; typical such modes for a stiffened plate are shown in figure 1. The situation is further
complicated by the fact that the local mode eigenvalue is just one of a cluster of eigenvalues,
all of which can significantly affect the interaction. Important theoretical advances in this
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difficult area have come from Tvergaard (1973), van der Neut (19776), and Koiter & Pignataro
(1976).

Here we examine the nature of the interaction in the light of the bifurcational formalism and
symmetry considerations. We find that the elimination of passive coordinates provides us with
a powerful tool for evaluating the contaminating effect of higher modes. Three alternative
potential function models are presented to describe the dominant two-fold interaction; the
complete analysis of one of these, the semi-symmetric point of bifurcation, is given in the
following section. The present approach owes much to the insight of Koiter (1976), whose
elegant contribution I am pleased to acknowledge.

We shall, in the main, use the plate system of figure 1 to illustrate general points. However,
these can be suitably reinterpreted for any ‘simple’ stiffened structure in the sense of Koiter,
with the modes sinusoidal in at least one direction, and

< L2 (44)

and L being the characteristic wavelengths for the local and overall modes respectively.

(a) Diagonalization of potential energy

We assume in the following that all contributing bifurcations of the perfect system arise on
a fundamental path describing a uniformly compressed state, and the V-to-W transformation
is known. Furthermore we suppose that the generalized coordinates directly measure critical
mode amplitudes, and write them as u; instead of ¢; in recognition of this. The well known
orthogonal properties of buckling modes then render the potential function diagonalized, and
we shall write this as 4 (or &) instead of W (or #”) to fall into line with an earlier notation
(Thompson & Hunt 1973).

We suppose that the diagonalization extends to all quadratic férms of the #;, so that 4 has

the properties
AN = AFF = ABF — =0 for i # ], (45)

subscripts extending over the full (active and passive) range of the u;, and superscripts over the
full range of A7. The elimination-of-passive-coordinates routine then gives the specialized
results for diagonalized. systems:

A .. |F
uF. =0 uF.. J— 17 )
ar b o AN] Aaa b
Ay, = Ay, AF = AT,
n 1 F
Ay = Ajju— 2 Z—(AaijAakl+A¢ikAajl+AailAajk) )
a=m+141qa

from equations (12), (14) and (18), where the tensor summation convention is temporarily
suspended. : '

We see that the contaminating effect of the passive coordinates is now confined to the quartic
term &/%;;, and is dependent upon the cubic coefficients AY;; etc., as well as the stability co-
¢fficients AY,. Ignoring the summation, we obtain the same potential function as an m-degree-
of-freedom Rayleigh-Ritz model of the system, in which the passive contribution is suppressed ;
re-introduction of the summation usually has a destabilizing effect, as we shall see.
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(b) Local modes

Let us suppose, for the moment, that the system is restrained against overall buckling, and
against all but one local mode of buckling, as shown in the lower diagram of figure 1. The wave
profile is taken to be sinusoidal in the longitudinal direction, and is unspecified in the trans-
verse direction. However we do insist that the out-of-plane deformation is zero at the stiffeners,
and the transverse waveform does not vary along the length.

Clearly, for the plate of figure 1, the potential function is symmetric in the mode, in the
sense that equal and opposite values of amplitude %,, being essentially mirror images of each
other about the mid-plane, give identical energy levels. For a curved panel this no longer holds.
However, symmetry is frequently guaranteed by reflexion about the mid-length (even number
of half-waves longitudinally), or by opposite deflexion pattern in adjacent panels, and we can
as a last resort follow Koiter (1976) in taking it as a valid approximation in general, in view
of the wavelength condition (44).

We must thus have a symmetric point of bifurcation C on the fundamental path, and can

write oA = Jol G+ 3o$(A — A°) 3 + higher-order terms, (47)

for the perfect system, where the load A plays the role of the distinctive bifurcational parameter
of the earlier formalism. Clearly the cubic coeflicient .2/}, is zero by the symmetry condition.
Typically, 2/§;, is positive for flat plates and negative for curved panels, so C is likely to be
stable symmetric for stiffened plates and unstable symmetric for stiffened cylinders.

(¢) Interaction between local modes

As the aspect (length-to-breadth) ratio of a flat plate is increased, there is a tendency for
critical eigenvalues to bunch together (Timoshenko & Gere 1961). We are thus obliged to
consider possible interactive effects between different local modes, since under the wavelength
condition we are dealing with a long plate. We show that all cubic coefficients, and hence all
contaminations of .7;;,; whatever the active coordinates, vanish for such interactions by use
of a general symmetry condition. Again, the same is approximately true for stiffened cylinders,
from the rapidly oscillating nature of the modes in question (Koiter 1976).

The usual condition for total symmetry, expressed for a perfect system with two modes

(Supple 1973) a5 41y uy A) = A(—1y, 1, A) = Ay, —up, 4), (48)

is too strong to be used in general here; it implies that symmetry in one mode is retained in
the presence of the other, and breaks down, for example, if both modes have an odd number
of half-waves longitudinally. We replace it with a weaker condition,

A(u;, A) = A(—uy, A), (49)

which merely states that reversing all modes simultaneously gives identical energy levels
(Golubitsky & Schaeffer 19794, 1979¢); this holds for all sinusoidal waveforms, by the same
argument as before.

The cubic coefficients are now quickly eliminated. Allowing just two coincident modes at
C, u; and u;, reversing them both and equating the cubic contributions, and remembering that
iz = 0, we have, AG3u; + AGuuf = 0, (50)
with the tensor summation convention temporarily suspended.

30 Vol. 300. A
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We note that lack of contamination of cubics in equation (46) means that we can inter-
change freely between these 4- and /-derivatives. Equation (50) must hold for any ratio
u;/u;; so AG;; = 0. By a similar argument with three modes we now obtain

Afjeu;uyup, (51)

summed over the three, which again must hold however we emerge from C in u,—u,—u;-space.

Thus, in general,
Ag’k = 0. (52)

Interactions on a quartic level can of course still arise between local modes (Supple 1973,
Magnus & Poston 1977, Golubitsky & Schaeffer 19794, ¢), but we comment no further on this.
It is the absence of the cubics, which otherwise might contaminate the dominant interaction
between local and overall modes, that is of interest here.

(d) Overall mode

For buckling in the overall mode alone, a stiffened system can usually be modelled by a
corresponding, perfectly orthotropic material, thereby smearing out the effect of the stiffeners.
Symmetry of the potential function in the mode, u,, is then guaranteed by mirror-image
reflexion as before, and we can write

A = Fp ol Gooty + 355 (A — AC) u2 + higher-order terms, (53)

for the perfect system. For a moderately wide stiffened plate this corresponds closely to the
familiar buckling of the Euler strut, with a positive but very small value of &/§s,. For a stiffened
cylinder =75, is negative, and the critical state unstable.

Without the smearing approximation, a non-zero value of the cubic 7%, is sometimes found.
Tvergaard (1973) for example develops such a term in his infinitely wide single-bay plate,
resulting from anticlastic bending in the panels between the stiffeners; this lead to the hyper-
bolic umbilic model of interactive buckling (Hunt 1977), briefly discussed later. Koiter &
Pignataro (1976) ignore transverse bending and direct stresses in their formulation, thereby
guaranteeing &/§, = 0. This must also be true for multi-bay panels with an even number of
bays, and stiffened cylinders, by simple symmetry considerations as before.

(¢) Interaction between local and overall buckling

For buckling in both modes simultaneously, the smearing approximation is invalid, and
we lose its associated symmetries. Unless they are otherwise guaranteed (by symmetry in the
cross section for example) the typical response is dominated by a 2/§,-term in the potential
function; clearly this implies a loss of symmetry in the overall mode u,. We continue to assume
symmetry in u,;, even in the presence of u,, the rapidly oscillating nature of the local mode
justifying the assumption that it carries an even number of half-waves longitudinally. Thus,
A = 0. '

The essence of the interaction, and the appearance of ./{;,, can be captured with a simple
model of the plate of figure 1. We follow Koiter & Pignataro (1976) in ignoring all transverse
stresses and shear lag, and add the extra assumption that the neutral surface, where the load is
applied, is inextensional. All of these effects could have been inciuded; but only would have
served to obscure the important interactive phenomenon.
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Let us thus consider a typical section through the panel, as shown in figure 2. We define -
x- and y-axes which remain on the neutral surface, as in the inextensional strut formulation
of Thompson & Hunt (1973). Deformation in the overall mode is resolved into an unspecified
_horizontal component and a vertical component W(x), and similarly local deformation is
resolved into an unspecified horizontal component and a vertical component w(x, y) as shown.
For our present purposes it is adequate to assume

w(x,y) = u,8(y)!sin nx/l, W(x) = uy,L sin nx/L, (54)

g(y) denoting the local mode profile in the transverse y-direction. We see that the overall mode
exhibits no y-dependence. '

inextensional
neutral surface

4[ez+w] ‘

Ficure 2. Simultaneous buckling in both local and overall modes of the
stiffened plate, at a typical section y = constant.

We take first just local mode deformation, as shown at the top of the figure. Inextensibility
of the neutral surface, and zero curvature, means that the panel must undergo longitudinal
stretching. To a first order this change in length is

1 L
5L = 1 j @ ds, | (55)
2), )

a dot denoting differentiation with respect to x. Assuming that it sets up a constant axial strain
through the length, we have ¢, = 8L/L in the deformed panel.

The stretching must involve some axial displacement, but we now assume that after this has
taken place, during the overall deformation, plane sections remain plane and shear lag is
ignored. Approximating for small angles, we thus have a further displacement in the x-
direction of — W (e+w), e being the panel eccentricity, as shown. This sets up the additional
axial strain . B .

€, = —OW(e+w)/ox = —W(e+w)— Wu. (56)

30-2


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY :

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

462 G. W. HUNT

Substituting the assumed forms and performing the differentiations, we obtain the total axial
strain in the panel as
nx

¢ . I . nx . mx X TX

€, = in?gu? +7 %, sin 7+ n2gu, uy (z sin - sin ~-—cos — cos -—l—) . (57)
Having ignored all transverse stresses, we obtain the membrane energy of a particular panel

by integrating }EeZ over its volume, £ being the Young modulus. The cross product of the first

two terms gives
b
AGy = nsEtef g2dy (58)
0

for the panel, where ¢ is its thickness and 4 its breadth. This is the cubic of interest.

It is interesting to observe that the deformation pattern of figure 2 is only admissible for
vanishingly small displacements; the appearance of the transverse variation g(y), and the
assumption that plane sections remain plane, become essentially contradictory as deflexions
grow in the combined mode. The problem remains with the introduction of neutral surface
extensibility as a passive effect, as in the next section. It is precisely because, by equations (46),
cubics are uncontaminated by passive coordinates that we obtain essentially the same result
as Koiter & Pignataro’s (1976) lower bound.

We note finally that, although this model is adequate for the dominant cubic, other contri-
butions to the energy such as quartics and load-dependent terms are also of key analytical
significance. However these can always be obtained by considering the two modes separately.

(f) Neutral surface extensibility

One feature of plate post-buckling which is missing from the above formulation, but which
is clearly desirable for a good descriptive model, is the growth in significance of membrane
effects as the panels deform into the non-developable (doubly curved) local mode; this accounts
for the considerable post-buckling stiffness of a pure plate mode. We must thus introduce
stretching of the neutral surface; this in turn eliminates the trivial nature of the fundamental
path, and allows for another well known phenomenon of stiffened structures — the shift in the
neutral surface away from the locally buckled panels as they lose effective stiffness. Such effects
are not truly products of the interaction, and can be examined in the local mode alone. Again
by equations (46) the coefficients thus obtained relate directly to their counterparts in the
interactive buckling formulation.

Neutral surface extensibility is best treated as a passive effect. We thus suppose that, entirely
as a result of local buckling, the neutral surface undergoes a uniform overall contraction across
the width of an amount u4 L; u, thus measures change from a uniformly contracted fundamental
state, and is a genuine incremental coordinate. Assuming that this sets up a constant axial strain
through the length, we have

€y = MUY — Uy, (59)
much as before (see equation (57)). Integrating again over the volume, we obtain the following
coeflicients of the potential function 4(u,, us, 4),

b b
A = —%—anLtf gidy, AS = ELa, Af;, = $n*ELt f gidy, {60)
0 0

for a typical panel-stiffener combination of cross-sectional area a.
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Eliminating uy as a passive coordinate using the last of equations (46), we thus have

JJﬁu = Anu - 3(A113) 2/A33|O

= $n*ELt [f: g4dy—£ (f:g2dy)2], ‘ (61)

which agrees with Koiter & Pignataro (1976).

The coefficient remains unchanged with the further addition of overall mode u,. The cross
term AS,, which at first glance seems likely when the strain equations (57) and (59) are combined,
vanishes on integration through the complete depth including stiffeners. The same does not
apply to Afjs, as with the earlier cubic, since g(y) vanishes at the stiffeners.

(g) Three potential-function models

Taking all of the earlier discussion into account, we have three possible potential-function
descriptions of the interaction and associated behaviour. Of these, it is clear that the parabolic
umbilic catastrophe is the most important for stiffened structures, but we note that it has
received less attention in the literature than the other two.

First we have the semi-symmetric points of bifurcation, given by

A = Je G b+ 3L G ud + 3 A G uBuy + 3 (A — AC) (1 §ud + 35 u3) + higher-order terms. (62)

This corresponds to either the hyperbolic or the elliptic umbilic catastrophe (Hunt 1977),
although in the canonical form the &/§{},,-term is omitted. Tvergaard’s (1973) stiffened plate
‘exhibits this, but its range of validity is very limited (Koiter 1976). »

Secondly, replacing 7§, with &/, as discussed earlier, we have the paraclinal point of
bifurcation

A = Fe Gt + 1A ool + 3 A Gt uy + (A — AC) (1§13 + A o5 uB)
+ higher-order terms.  (63)

This corresponds to the parabolic umbilic catastrophe, although 7§, is again omitted from
the canonical form.

Finally, we have the fully symmetric point of bifurcation, which must apply, for example,
when ¢ = 0;

A = Fp Al Tl + 1A G tdud + Fr A Goath + (A — AC) (A Fud + A58 uf)
+ higher-order terms.  (64)
This corresponds to the double-cusp catastrophe.
All of these refer to the perfect system at complete coincidence. The key interaction term of
the first two is &/, as we have seen. In the third this is replaced by 27§, which is liable to
contamination from higher local modes. Equations (46) give,

n 1 C
A2 = Afies —E-:s ' [4ou114a0e +2(4012) %] - (65)

This may well exhibit a collection of non-zero AS,-contributions, and localized analysis is thus
considerably more complicated.
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(h) Critical point separation giving a butterfly catastrophe

We now briefly consider the separation of the two contributing bifurcations, which can be
achieved analytically with the introduction of a splitting parameter o as in the following semi-
symmetric analysis. We limit the discussion to the first two potential functions of the previous
section, with non-zero &/,.

|

u €

Ficure 3. Equilibrium paths and imperfection sensitivity about a butterfly catastrophe, with 5411, positive.
For the stiffened plate, with the two bifurcations well separated, the post-buckling is fully stable (top).
As they converge, we meet the butterfly point (centre), and buckling in the local mode becomes unstable
(bottom).

Let us suppose that local buckling occurs first with increasing load, and 7§y, is positive
(7 defined as for m = 2). Treating this as a distinct bifurcation in u,, we now eliminate the
overall mode u, as a passive coordinate, dropping to m = 1. Equations (46) give

o = A%~ 3(A112)2/A22|C, (66)
where the coefficients of the right-hand side are of course the same as the &/-derivatives dis-

cussed earlier. We note that AS, is positive (Thompson & Hunt 1973), but approaches zero as
the two bifurcations coalesce; there must thus be some finite separation at which G = 0,
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the passive contamination being just enough to eliminate the positive 4f};;. This is a butterfly
catastrophe point.

Stability at the butterfly point is controlled by a sixth-order term, which is beyond the scope
of this analysis. However, taking it as positive, we would expect the equilibrium path behaviour
and imperfection-sensitivity shown schematically in figure 3. We note that, although buckling
is initiated in mode u,, the contamination implies that it quickly develops into the combined
mode; this effect is not shown in figure 3.

The phenomenon is clearly of some design significance. It defines the limit of purely stable
structural response, and as such is given some analytical prominence by Koiter (1976). It is
also closely related to the so-called ‘reduced Euler load’ (Thompson ¢t al. 1976). We note that
it is certainly amenable to general analysis, although we explore it no further here.

(2) Koiter’s amplitude modulation of the local mode

Finally, we briefly discuss one further refinement which can be brought to the model. In
all of Koiter’s studies of the interaction between local and overall buckling, including stiffened
structures, it is assumed that the local mode amplitude is not constant along the length, but is
a ‘slowly-varying’ function of x; thus the local mode is modulated in the presence of the overall.

The analytical implications of this are quite considerable. For example, to determine from
first principles the amplitude function giving the minimum energy state requires an application
of the calculus of variations. It is clearly important here whether local or overall buckling
arises first. Nevertheless, appropriate functions for each situation are given explicitly by
Koiter (1976), and these could be used directly to arrive at a modified two-degree-of-freedom
model. We explore this no further at present.

The refinement is of considerable practical significance, allowing local buckling to be a
truly localized effect. In multi-bay plates, for example, it sets the amplitude to zero when
local and overall buckling act against each other (as with overall deformation away from the
stiffeners in figure 1). This introduces an &/{},-term into such systems which otherwise, with an
even number of half-waves, carry a seemingly enforced symmetry in u,. Entirely similar con-
clusions can also be drawn for stiffened cylinders. We finally note that such amplitude modu-
lation clearly cannot be simply described from a modal (Fourier-type) formulation.

4. SEMI-SYMMETRIC BIFURCATION
(a) Comprehensive analysis

Our treatment of stiffened structures leans largely on the elimination-of-passive-coordinates
routine, no analysis of the bifurcation itself being attempted. We close with a full quantitative
description of the simplest of the three proposed potential function models, the semi-symmetric
point of bifurcation. We include four controls, the load, two imperfections, and a splitting
parameter. We note that the last of these is not necessary for a universal unfolding in the sense
of Thom (1975), but is of considerable practical importance.

We thus write potential function (62), previously given for the perfect system only, to include
all of these parameters:

A = § A 51 + § A Totuy + 3 (A — A) (17 ud + 37 u3)
+ 31§ 018 + A1C€lu, + o/3Ce%, + higher-order terms.  (67)
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Here the &7{};;-term is omitted, as in the canonical form (Thom 1975), and we must insist
that &%, and /{}, are both non-zero. However we can and do set /3¢ and «/2¢ to zero
without loss of generality, so €' and ¢? are principal imperfections, related directly to u, and u,
respectively. We see that the splitting parameter o, when introduced in this way, allows for
a direct measure of critical load separation on the fundamental path.

The lowest-order equilibrium perturbation equations (29) of interest become

254 11,uPud + 2571, u® AD + 277, uf oM + /11| C = O,} (E)
o 112(UD) 2+ A 5o (ufV)? + 2.8 5 ufD AW 4 oA 3623|C = 0,
and the critical state equations (31) are
o 19 % UV + o 12y ufV + 7y %, AV + A3 %, TD|C = 0,} ()
A 110 % UV + L g0 Ko D + 55 %, AV|C = 0,

which take the special form of equations (33) for m-fold criticality,

A 1o uP + A1 AV + 1, 00|C = 0,
o 13uV|C = 0, (mC)
A gtV + A 30 AV|C = 0.

Finally the extra equation (85), specifying secondary bifurcations as opposed to limit points,
becomes

o 2y + ol o xuP|C = 0. (B)

Just which of these equations are to be used, which terms if any are absent, and how they

are to be solved depend precisely on the problem in hand. For example, if we are to consider

the post-buckling of the perfect system, ¢! = €2 = 0, we would use equations (E) with

TABLE 1. FIRST-ORDER ANALYSIS OF SEMI-SYMMETRIC BIFURCATION

(The appropriate equations for each situation are as shown, subject to the
conditions arising from the exclusion of certain control parameters.)

equations conditions solution
post-buckling of the perfect o =0, direct \
system E el®) — ¢22) — (
imperfection sensitivity on the )
symmetric section E,C o) = ¢l® = direct compete
coincidence
full imperfection sensitivity E,C oM =0 generalized =0
imperfection
secondary bifurcations EC B o =0 direct
post-buckling of the perfect system E €l = 2@ = direct
bifurcations of the perfect system E,C €l® = 2@ = 0 direct
imperfection sensitivity on the
symmetric section E, G €l = ¢ direct
locus of m-fold critical point E, mGC direct
(umbilic point) near
generalized coincidence
full imperfection sensitivity E,C 1mperfect10n,
generalized
loading parameter
secondary bifurcations E,GB generalized
loading parameter/
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el® = ¢2® = 0, and with ¢ = 0 if we are to be concerned just with complete coincidence.
The significant alternatives are presented in table 1.

The generalized imperfection and generalized loading parameter can be used as aids to the
solution of the equations when appropriate, and further simplifications which can also some-
times be exploited include specification of the perturbation parameter s and normalization
of the local eigenvector x;. As an example of the former, it is sometimes useful in imperfection-
sensitivity studies to specify s as the positive square root of generalized imperfection, written
¥+ (Hunt 1977, 1979). Writing € as a Taylor expansion about C we thus have

€ = W05+ Je@0s2 4 @03 | (68)
and equating coefficients, €0 = @C = @0 = =0, (69)
€@C = 2,

Sometimes other interpretations of s may be useful, but we must ensure that s is capable of
describing all possible solutions; for this reason it may be left undefined and solutions obtained

i

(c)

F1GurE 4. The homoeoclinical point of bifurcation: (a)—(c) show patterns of equilibria for a perfect system with
0 < 0,0 = 0,and ¢ > 0 respectively; (d) shows the failure locus (imperfection sensitivity) with the addition
of a symmetry-preserving imperfection €2.

31 Vol. goo. A
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in a rate space u{) — A® say, although these become the path tangents when mapped directly
into the corresponding coordinate space #;—A (Thompson & Hunt 1973). Normalization of
the local eigenvector involves simply setting one of the x; to unity; thus x; = 1 takes care of all
possibilities except x; = 0, which must then be explored as a special case (Hunt 1977).

Ficure 5. The full imperfection sensitivity of the homoeoclinical point of bifurcation for the Tvergaard stiffened
plate, at complete coincidence and with the bifurcations separated. Both exhibit the unique topology of the
hyperbolic umbilic catastrophe.

(b) Subclassification of semi-symmetric branching

Semi-symmetric branching has three separate bifurcational manifestations, the difference
depending on the number of post-buckling paths of the perfect system at complete coincidence
and the form of the imperfection sensitivity; we refer to these as monoclinal, anticlinal and
homoeoclinal branching. Full imperfection-sensitivity surfaces at complete and near coinci-
dence for all three are computed and plotted by Hunt ¢t al. (1979), each being related directly
to a different starting condition of the propped cantilever model due to Thompson & Gaspar

:(19777). Here we shall only illustrate the general analysis of one of the three, the homoeoclinal
point of bifurcation.

We shall not give all the results of table 1 since they have, in the main, been generated by
isolated perturbation schemes in the past; the treatment of full coincidence can be found in
Hunt (1977), and of near coincidence in Hunt (1979). However, we do show the main results,
in the behaviour of the equilibrium paths of the perfect system (figure 4a—c), the imperfection
sensitivity on the symmetric section (figure 4d), and the full imperfection-sensitivity (figure 5).
The latter has been specifically plotted for the Tvergaard (1973) plate, and has also been
related to the propped cantilever as discussed above.
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(¢) Numerical search procedure

This section might be omitted by all readers except those with an interest in the details of
the imperfection-sensitivity analysis.

A polar representation of controls may be entirely appropriate for imperfections, when we
come to plot the final results, but not necessarily for the loads; it is of more interest to view the
imperfection sensitivity, for instance, at a constant value of splitting parameter o, than a
constant angular polar coordinate ¢. We could translate the second view into the first by fixing
the load state and using ¢ as a dependent variable, but this is contrary to the nature of imper-
fection-sensitivity plots, which are invariably visualized as imperfection independent and load
dependent. For a systematic plotting procedure we would clearly like to stick with convention,
but since o is previously specified we are now obliged tointroduce a numerical search procedure,
necessarily performed on a computer.

Let us thus consider the plotting routine for a typical imperfection-sensitivity surface with
the four controls of 4, o, €! and €2, as shown in figure 5. We first fix the values of ¢?, giving 0
and ¢ of the polar representation. Applying transformation (37), we can write down the equa-
tions for the imperfection ray, and considering for the moment o = 0, they can be solved for
the set of AMC; hence, knowing €, we obtain a first-order estimate of critical loads.

But when o is non-zero, the situation is not so simple; the generalized load approach can be
used, but we cannot fix the correct load ray without knowing A and it is this that we are seeking
in the analysis. We overcome the problem by scanning the complete load space incrementally,
using a numerical search involving a reduction in increment size, to home in on situations
where a solution to the equations coincides with the value obtained from the polar transfor-
mation. The process of course implies greatly increased computer time, and it may therefore

_be advisable in problems of near coincidence to force the bifurcations together by introducing
a splitting parameter. However, the analyst must be aware of the topological significance of
the manoeuvre, in the light of the criteria of structural stability and universal unfolding.

CONCLUDING REMARKS

The paper supplies a carefully worked algorithm for the analysis of compound bifurcation,
in a form suitable for the application of numerical procedures; it could also be applied to
distinct bifurcations, but techniques already abound for their study (see, for example, Thompson
& Hunt 1973). Of course, the intricacies of the analysis must increase with the complexity of
the key underlying phenomenon, and thus for some problems of compound bifurcation the
paper can only indicate the way forward. Here the simplifying concepts such as generalized
imperfection and generalized load will remain useful, but may need some rethinking.

The stiffened-structure formulation raises some points of general interest. The first lies in
the use of symmetry conditions and the elimination of passive coordinates. In combination,
these are seen to provide a simple tool for assessing the nature of instabilities, and could be
extended to other systems. They do not, of course, tell us whether a symmetric bifurcation is
stable or unstable, for which we need to quantify certain coefficients. Nevertheless, the approach
seems useful, particularly for problems of compound bifurcation.

Secondly, the treatment draws attention to the ways in which the catastrophes of Thom
(1975) nest inside one another. If the substrata of a phenomenon are known completely, light

31-2
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is shed on the ways in which a perturbed version can appear, and remedies can be sought for
the problems of all-too-local effects. We see this in the Tvergaard (1973) stiffened plate, where
in the overall mode alone an asymmetric point of bifurcation (fold) is better seen as a perturbed
symmetric bifurcation (cusp); less trivial, in the interactive case the hyperbolic umbilic of
figure 5 appears in the substrata of a parabolic umbilic, which in turn might be seen, in the
large, as part of a perturbed double cusp.

In conclusion, we feel that competent analysis requires a combination of qualitative under-
standing and numerical expertise.
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